Probabilistic and Average Linear Widths in L_{∞}-Norm with Respect to r-fold Wiener Measure

V. E. Maiorov
Department of Mathematics, Technion, Haifa, Israel

AND
G. W. Wasilkowski*
Department of Computer Science, University of Kentucky, Lexington, Kentucky 40506

Communicated by Allan Pinkus
Received February 9, 1994; accepted in revised form February 6, 1995

Abstract

We show that for r-fold Wiener measure, the probabilistic and average linear widths in the L_{∞}-norm are proportional to $n^{-(r+1 / 2)} \sqrt{\ln n / \delta}$ and $n^{-(r+1 / 2)} \sqrt{\ln n}$, respectively. © 1996 Academic Press, Inc.

1. Introduction

We study probabilistic linear (n, δ)-widths and average linear n-widths for L_{∞}-approximation of functions that are distributed according to the r-fold Wiener measure. As the clasical n-widths (see, e.g., [9]); probabilistic and average widths quantify the error of best approximating operators. However, in the classical approach, the errors are defined by their worst case with respect to a given class (typically a unit ball of the underlying space). In the probabilistic approach, the errors are defined by the worst case performance on a subset of measure at least $1-\delta$, and in the average case approach, they are defined by their expectations, both with respect to a given probability measure.

The study of probabilistic and average widths has been suggested only recently (see, e.g., $[8,13]$) and relatively few results have been obtained so far (see, e.g., $[1,2,4-7,10,12,13]$). These include results on probabilistic and average Kolmogorov widths in L_{q}-norm for any $q \leqslant \infty$ and on probabilistic and average linear widths in L_{q}-norm for finite q. In both cases, the underlying space of function is the $C^{r}[0,1]$ space equipped with

[^0]the r-fold Wiener measure. More specifically, the upper bounds on the average widths follow from [11] for $q<\infty$ and [10] for $q=\infty$. The asymptotic lower bounds on average Kolmogorov widths with arbitrary q and on average linear widths with finite q are mainly due to [4-6]. The results concerning probabilistic Kolmogorov and linear widths are also due to [4-6]. Our result concerning the probabilistic and average linear widths for $q=\infty$ provides the last missing piece as far as the probabilistic nd average linear widths with r-fold Wiener measures are concerned. Thus, denoting probabilistic Kolmogorov and linear (n, δ)-widths by $d_{n, \delta}^{(p)}\left(C^{r}, L_{q}, \omega_{r}\right)$ and $\lambda_{n, \delta}^{(p)}\left(C^{r}, L_{q}, \omega_{r}\right)$, and average Kolmogorov and linear n-widths by $d_{n}^{(a)}\left(C^{r}, L_{q}, \omega_{r}\right)$ and $\lambda_{n}^{(a)}\left(C^{r}, L_{q}, \omega_{r}\right)$, respectively, we conclude that
\[

$$
\begin{array}{ll}
d_{n, \delta}^{(p)}\left(C^{r}, L_{q}, \omega_{r}\right) \asymp n^{-(r+1 / 2)} \sqrt{1+n^{-1} \ln (1 / \delta)}, & 1 \leqslant q \leqslant \infty, \\
\lambda_{n, \delta}^{(p)}\left(C^{r}, L_{q}, \omega_{r}\right) \asymp \begin{cases}n^{-(r+1 / 2)} \sqrt{1+n^{-\min \{1,2 / q\}} \ln (1 / \delta)}, & 1 \leqslant q<\infty, \\
n^{-(r+1 / 2)} \sqrt{\ln (n / \delta)}, & q=\infty,\end{cases} \\
d_{n}^{(a)}\left(C^{r}, L_{q}, \omega_{r}\right) \asymp n^{-(r+1 / 2)}, & 1 \leqslant q \leqslant \infty, \\
\lambda_{n}^{(a)}\left(C^{r}, L_{q}, \omega_{r}\right) \asymp\left\{\begin{array}{l}
n^{-(r+1 / 2)}, \\
n^{-(r+1 / 2)} \sqrt{\ln n},
\end{array}\right. & q=\infty .
\end{array}
$$
\]

It is interesting to note that for finite q, the average Kolmogorov and average linear n-widths are equal modulo multiplicative constants. We have also equality between probabilistic Kolmogorov and linear (n, δ)-widths for $q \leqslant 2$. For such values of q, linear approximation opertors are (modulo a constant) as good as nonlinear operators. The difference is only for $q=\infty$ (for average widths) and for $q>2$ (for probabilistic widths); however, then linear operators lose to optimal nonlinear operators only by a factor of $\sqrt{\ln n}$ and $n^{(1 / 2-1 / q)+}$, respectively.

The paper is organized as follows. Basic definitions and the main result are provided in Section 2. The proof of the result is in Section 3.

2. Main Result

For a nonnegative integer r, let C^{r} be the space of r times continuously differentiable functions defined on $[0,1]$. Recall that the corresponding Kolmogorov and linear n-widths are defined respectively by

$$
\begin{align*}
& d_{n}\left(C^{r}, L_{q}\right)=\inf _{T \in \Lambda_{n}} \sup _{f \in B\left(C^{r}\right)}\|f-T(f)\|_{q}, \tag{1}\\
& \lambda_{n}\left(C^{r}, L_{q}\right)=\inf _{T \in \mathscr{L}_{n}} \sup _{f \in B\left(C^{r}\right)}\|f-T(f)\|_{q}, \tag{2}
\end{align*}
$$

where $B\left(C^{r}\right)$ is the unit ball in C^{r}, Λ_{n} is the class of all (not necessarily linear) operators $T: B\left(C^{r}\right) \rightarrow L_{q}$ whose range is contained in an n-dimensional subspace of L_{q}, and \mathscr{L}_{n} is the class of all linear operators from Λ_{n}.

Let μ be a probability measure defined on the Borel σ-field of C^{r}. Given $\delta \in[0,1]$, the corresponding probabilistic Kolmogorov and probabilistic linear (n, δ)-widths are defined by

$$
\begin{align*}
& d_{n, \delta}^{(p)}\left(C^{r}, L_{q}, \mu\right)=\inf _{G} \inf _{T \in \Lambda_{n}} \sup _{f \in G}\|f-T(f)\|_{q}, \tag{3}\\
& \lambda_{n, \delta}^{(p)}\left(C^{r}, L_{q}, \mu\right)=\inf _{G} \inf _{T \in \mathscr{L}_{n}} \sup _{f \in G}\|f-T(f)\|_{q} . \tag{4}
\end{align*}
$$

The first infima are taken with respect to all measurable sets $G \subset C^{r}$ with $\mu(G) \geqslant 1-\delta$.

The average Kolmogorov and average linear n-widths are defined by

$$
\begin{align*}
& d_{n}^{(a)}\left(C^{r}, L_{q}, \mu\right)=\inf _{T \in \Lambda_{n}} \mathrm{E}_{\mu}\left(\|f-T(f)\|_{q}\right), \tag{5}\\
& \lambda_{n}^{(a)}\left(C^{r}, L_{q}, \mu\right)=\inf _{T \in \mathscr{L}_{n}} \mathrm{E}_{\mu}\left(\|f-T(f)\|_{q}\right) . \tag{6}
\end{align*}
$$

Here E_{μ} denotes the expectation with respect to μ, i.e.,

$$
\mathrm{E}_{\mu}\left(\|f-T(f)\|_{q}\right)=\int_{C^{n}}\|f-T(f)\|_{q} \mu(d f) .
$$

Obviously,

$$
\begin{align*}
& d_{n}^{(a)}\left(C^{r}, L_{q}, \mu\right)=\int_{0}^{1} d_{n, \delta}^{(p)}\left(C^{r}, L_{q}, \mu\right) d \delta, \tag{7}\\
& \lambda_{n}^{(a)}\left(C^{r}, L_{q}, \mu\right)=\int_{0}^{1} \lambda_{n, \delta}^{(p)}\left(C^{r}, L_{q}, \mu\right) d \delta .
\end{align*}
$$

In what follows we assume that μ equals the r-fold Wiener measure ω_{r}. For basic properties of ω_{r}, see, e.g., [3]. Here we only mention that ω_{r} is a zero mean Gaussian measure with the covariance function

$$
\mathrm{E}_{\omega_{r}}(f(x) f(y))=\int_{0}^{1} \frac{(x-t)_{+}^{r}(y-t)_{+}^{r}}{(r!)^{2}} d t
$$

and that $\omega_{r}(A)=\omega_{0}\left(D^{r} A\right)$, where ω_{0} is the classical Wiener measure on the space C^{0} and D^{r} is the differential operator, $D^{r} f=f^{(r)}$.

As mentioned in Introduction, the probabilistic and average Kolmogorov widths have been found for any q, and the probabilistic and
average linear widths have been found only for finite q. The following theorem deals with probabilistic and average linear widths for $q=\infty$.

Theorem 1. For every r and $\delta \in\left(0, \frac{1}{2}\right)$,

$$
\begin{align*}
\lambda_{n, \delta}^{(p)}\left(C^{r}, L_{\infty}, \omega_{r}\right) & \asymp n^{-(r+1 / 2)} \sqrt{\ln (n / \delta)}, \tag{8}\\
\lambda_{n}^{(a)}\left(C^{r}, L_{\infty}, \omega_{r}\right) & \asymp n^{-(r+1 / 2)} \sqrt{\ln n} .
\end{align*}
$$

Actually, the proof of Theorem 1 provides another result concerning linear widths for finite dimensional spaces. Let l_{∞}^{m} denote the space \mathbb{R}^{m} equipped with the maximum norm, and let γ denote zero mean normal distribution with the identity covariance matrix, $\gamma=\mathscr{N}(0, I)$.

Theorem 2. Let $m>2 n$ and $\delta \in\left(0, \frac{1}{2}\right)$. Then

$$
\begin{equation*}
\lambda_{n, \delta}^{(p)}\left(\mathbb{R}^{m}, l_{\infty}^{m}, \gamma\right) \asymp \sqrt{\ln ((m-n) / \delta)}, \quad \lambda_{n}^{(a)}\left(\mathbb{R}^{m}, l_{\infty}^{m}, \gamma\right) \asymp \sqrt{\ln (m-n)} . \tag{9}
\end{equation*}
$$

3. Proof

Due to (7), we only need to show the equality concerning the probabilistic widths. We begin with few auxiliary lemmas.

Lemma 1. Let $m>2 n$. Let T be any operator in \mathbb{R}^{m} whose range is contained in an n-dimensional subspace. For $i=1, \ldots, m$, let $g_{i}=e_{i}-T^{*}\left(e_{i}\right)$, where e_{i} is the i th unit vector. Then there are distinct indices $i_{1}, \ldots, i_{m-2 n}$ such that

$$
\operatorname{dist}\left\{g_{i_{s+1}}, \operatorname{lin}\left\{g_{i_{1}}, \ldots, g_{i_{s}}\right\}\right\} \geqslant 1 / \sqrt{2}
$$

for all $s=0, \ldots, m-2 n-1$.
Proof. It is known (see, e.g., [9]) that the following Kolmogorov n-widths equal

$$
\begin{equation*}
d_{n}\left(\operatorname{conv}\left(e_{1}, \ldots, e_{m}\right), l_{2}^{m}\right)=\sqrt{(m-n) / m} \tag{10}
\end{equation*}
$$

Therefore, there is i_{1} such that

$$
\operatorname{dist}\left\{g_{i_{1}},\{0\}\right\}=\left\|e_{i_{1}}-T^{*}\left(e_{i_{1}}\right)\right\|_{2} \geqslant \sqrt{(m-n) / m}
$$

Assume by induction that $i_{1}, \ldots, i_{s}(s \leqslant m-2 n-1)$ exist. Consider the index sets $I=\left\{i_{1}, \ldots, i_{s}\right\}$ and $I^{\prime}=\{1, \ldots, m\} \backslash I$, and the following operator $P: l_{2}^{m} \rightarrow l_{2}^{m-s}, P x=\left(x_{i}\right)_{i \in I^{\prime}}$. From (10) it follows that

$$
d_{n}\left(\operatorname{conv}\left\{P e_{i}: i \in I^{\prime}\right\}, l_{2}^{m-n}\right) \geqslant \sqrt{(m-s-n) /(m-s)} .
$$

Therefore, there is $i_{s+1} \in I^{\prime}$ for which

$$
\operatorname{dist}\left\{P e_{i_{s+1}}, P L\right\} \geqslant \sqrt{(m-s-n) /(m-s)},
$$

where $L=\operatorname{Im} T^{*}$. Since $P g_{i}=-P T^{*} e_{i} \in P L$ for any i, we have

$$
\begin{aligned}
\operatorname{dist}\left\{g_{i_{s+1}}, \operatorname{lin}\left\{g_{i_{1}}, \ldots, g_{i_{s}}\right\}\right\} & \geqslant \operatorname{dist}\left\{P g_{i_{s+1}}, \operatorname{lin}\left\{P g_{i_{1}}, \ldots, P g_{i_{s}}\right\}\right\} \\
& \geqslant \operatorname{dist}\left\{P e_{i_{s+1}}, P L\right\} \geqslant \sqrt{(m-s-n) /(m-s)}
\end{aligned}
$$

Since $s \leqslant m-2 n$, we have $(m-s-n) /(m-n) \geqslant \frac{1}{2}$. This completes the proof.

Let $k=m-2 n$, and let $r_{1}, \ldots, r_{k} \in \mathbb{R}^{m}$. By $G_{a}\left(r_{1}, \ldots, r_{k}\right)$ we denote the following polytop in \mathbb{R}^{m} :

$$
G_{a}\left(r_{1}, \ldots, r_{k}\right)=\left\{x \in \mathbb{R}^{m}: \max _{1 \leqslant i \leqslant k}\left|\left\langle r_{i}, x\right\rangle\right| \leqslant a\right\} .
$$

Lemma 2. Let $h_{s}=g_{i_{s}}$ for $s=1, \ldots, k$. Then

$$
\gamma\left(x:\|x-T x\|_{\infty} \geqslant a\right) \geqslant 1-\gamma\left(G_{a}\left(h_{1}, \ldots, h_{k}\right)\right) .
$$

Proof. Since

$$
\begin{aligned}
\|x-T x\|_{\infty} & =\max _{1 \leqslant i \leqslant m}\left|\left\langle e_{i}, x-T x\right\rangle\right| \\
& =\max _{1 \leqslant i \leqslant m}\left|\left\langle e_{i}-T^{*} e_{i}, x\right\rangle\right| \\
& \geqslant \max _{1 \leqslant i \leqslant k}\left|\left\langle h_{i}, x\right\rangle\right|,
\end{aligned}
$$

we have $\gamma\left(x:\|x-T x\|_{\infty} \geqslant a\right) \geqslant \gamma\left(x: \max _{1 \leqslant i \leqslant k}\left|\left\langle h_{i}, x\right\rangle\right| \geqslant a\right)=1-$ $\gamma\left(G_{a}\left(h_{1}, \ldots, h_{k}\right)\right)$, which completes the proof.

Lemma 3. For

$$
a=\sqrt{\frac{1}{2} \ln \frac{m-2 n}{2 \delta}}
$$

we have

$$
\gamma\left(G_{a}\left(h_{1}, \ldots, h_{k}\right)\right) \leqslant\left(1-\frac{2 \delta}{m-2 n}\right) \gamma\left(G_{a}\left(h_{1}, \ldots, h_{k-1}\right)\right) .
$$

Proof. Due to rotational invariance of γ we can assume without loss of generality that

$$
h_{1}, \ldots, h_{k-1} \in \operatorname{lin}\left\{e_{1}, \ldots, e_{k-1}\right\}, \quad h_{k} \in \operatorname{lin}\left\{e_{1}, \ldots, e_{k}\right\}
$$

For $x \in \mathbb{R}^{m}$, let $x^{\prime}=\left(x_{1}, \ldots, x_{k-1}\right)$. Then

$$
\begin{aligned}
\gamma\left(G_{a}\left(h_{1}, \ldots, h_{k}\right)\right)= & (2 \pi)^{-k / 2} \int_{G_{a}\left(h_{1}, \ldots, h_{k-1}\right)} \exp \left(-\left\|x^{\prime}\right\|_{2}^{2} / 2\right) \\
& \times \int_{\left|\left\langle x^{\prime}, h_{k}^{\prime}\right\rangle+x_{k} h_{k k}\right| \leqslant a} \exp \left(-x_{k}^{2} / 2\right) d x_{k} d x^{\prime} \\
\leqslant & (2 \pi)^{-(k-1) / 2} \int_{G_{a}\left(h_{1}, \ldots, h_{k-1}\right)} \exp \left(-\left\|x^{\prime}\right\|_{2}^{2} / 2\right) d x^{\prime}(2 \pi)^{-1 / 2} \\
& \times \int_{\mid t t_{k k \mid} \leqslant a} \exp \left(-t^{2} / 2\right) d t \\
= & \gamma\left(G_{a}\left(h_{1}, \ldots, k_{k-1}\right)\right)(2 \pi)^{-1 / 2} \int_{\mid t t_{k k \mid} \leqslant a} \exp \left(-t^{2} / 2\right) d t .
\end{aligned}
$$

From Lemma 1 it follows that $\left|h_{k k}\right|=\operatorname{dist}\left\{h_{k}, \operatorname{lin}\left\{h_{1}, \ldots, h_{k-1}\right\}\right\} \geqslant 1 / \sqrt{2}$. Therefore,

$$
\begin{equation*}
\gamma\left(G_{a}\left(h_{1}, \ldots, h_{k}\right)\right) \leqslant \gamma\left(G_{a}\left(h_{1}, \ldots, k_{k-1}\right)\right)(2 \pi)^{-1 / 2} \int_{|t| \leqslant a \sqrt{2}} \exp \left(-t^{2} / 2\right) d t \tag{11}
\end{equation*}
$$

To complete the proof we need only to show that

$$
\begin{equation*}
(2 \pi)^{-1 / 2} \int_{|t| \leqslant a \sqrt{2}} \exp \left(-t^{2} / 2\right) d t \leqslant 1-\frac{2 \delta}{m-2 n} \tag{12}
\end{equation*}
$$

for sufficiently large $(m-2 n) /(2 \delta)$.
For this end, we use the fact that

$$
\begin{equation*}
\sqrt{\frac{2}{\pi}} \int_{x}^{\infty} e^{-t^{2} / 2} d t \geqslant \frac{c}{x} e^{-x^{2} / 2} \quad \forall c \in(0, \sqrt{2 / \pi}), \forall x \geqslant \sqrt{\frac{c}{\sqrt{2 / \pi}-c}} \tag{13}
\end{equation*}
$$

which follows from the fact that $f(x)=\sqrt{2 / \pi} \int_{x}^{\infty} e^{-t^{2} / 2} d t-c e^{-x^{2} / 2} / x$ has a negative derivative for such values of c and x and the fact that $f(\infty)=0$.

Using $c=1 / \sqrt{\pi}$ and $x=a \sqrt{2}$, we have $x \geqslant \sqrt{c /(\sqrt{2 / \pi}-c)}$ whenever $(m-2 n) /(2 \delta) \geqslant \exp (1 /(\sqrt{2}-1))$. Moreover, $c / x \geqslant \sqrt{2 \delta /(m-2 n)}$ whenever $(m-2 n) /(2 \delta) \geqslant \pi \ln ((m-n) /(2 \delta))$. Thus (13) holds when

$$
\frac{m-2 n}{2 \delta} \geqslant \max \left\{\pi \ln \frac{m-2 n}{2 \delta}, e^{1 /(\sqrt{2}-1)}\right\} .
$$

This completes the proof of Lemma 3.

We are ready to prove Theorem 2.
Proof of Theorem 2. Applying Lemma $3 k=m-2 n$ times, we get

$$
\gamma\left(G_{a}\left(h_{1}, \ldots, h_{k}\right)\right) \leqslant\left(1-\frac{2 \delta}{k}\right)^{k} .
$$

Hence, Lemma 2 yields

$$
\gamma\left(x:\|x-T x\|_{\infty} \geqslant a\right) \geqslant 1-\left(1-\frac{2 \delta}{k}\right)^{k} \geqslant \delta .
$$

Since T is arbitrary, this proves that

$$
\lambda_{n \delta}^{(p)}\left(\mathbb{R}^{m}, l_{\infty}^{m}, \gamma\right) \geqslant a \asymp \sqrt{\ln ((m-n) / \delta)} .
$$

To prove equality observe that $\gamma(Q) \geqslant 1-\delta$ for

$$
Q=\left\{x \in \mathbb{R}^{m}: \max _{1 \leqslant i \leqslant m-n}\left|x_{i}\right| \leqslant \sqrt{\ln ((m-n) / \delta)\}} .\right.
$$

This means that for the orthogonal projection operator T on $\operatorname{lin}\left\{e_{m-n+1}, \ldots, e_{m}\right\}$,

$$
\sup _{x \in Q}\|x-T x\|_{\infty} \leqslant \sqrt{\ln ((m-n) / \delta)} .
$$

This proves that $\lambda_{n, \delta}^{(p)} \asymp \sqrt{\ln ((m-n) / \delta)}$, as claimed, and completes the proof of Theorem 2.

We are ready to prove Theorem 1.
Proof of Theorem 1. We begin with the lower bound:

$$
\begin{equation*}
\lambda_{n, \delta}^{(p)}\left(C^{r}, L_{\infty}, \omega_{r}\right) \geqslant c_{r} n^{-(r+1 / 2)} \sqrt{\ln (n / \delta)} \tag{14}
\end{equation*}
$$

for a positive constant c_{r}. For this end, we consider the inverse function of probabilistic widths. That is, given n, let

$$
e_{n}\left(\varepsilon ; C^{r}, L_{\infty}, \omega_{r}\right):=\inf _{T \in \mathscr{L}_{n}} \omega_{r}\left(f \in C^{r}:\|f-T(f)\|_{\infty} \geqslant \varepsilon\right)
$$

for $\varepsilon \geqslant 0$. Obviously, $e_{n}\left(\varepsilon ; C^{r}, L_{\infty}, \omega_{r}\right)=\delta$ for $\varepsilon=\lambda_{n, \delta}^{(p)}\left(C^{r}, L_{\infty}, \omega_{r}\right)$.
Take now $m=2 n$ and $a_{i}=i / m$ for $i=1, \ldots, m$. Let $\mu_{r, 0}=\omega_{r}(\cdot \mid N(f)=0)$ be the conditional measure with $N(f)=\left[f^{(j)}\left(a_{i}\right)=0: 0 \leqslant j \leqslant r, 1 \leqslant i \leqslant m\right]$. Since ω_{r} is Gaussian,

$$
\begin{aligned}
e_{n}\left(\varepsilon ; C^{r}, L_{\infty}, \omega_{r}\right) & \geqslant e_{n}\left(\varepsilon ; C^{r}, L_{\infty}, \mu_{r, 0}\right) \\
& \geqslant \inf _{T \in \mathscr{L}_{n}} \mu_{r, 0}\left(f \in C^{r}: \max _{1 \leqslant i \leqslant m}\left|f\left(t_{i}\right)-T(f)\left(t_{i}\right)\right| \geqslant \varepsilon\right),
\end{aligned}
$$

where $t_{i}=\left(a_{i-1}+a_{i}\right) / 2=(2 i-1) /(2 m)$. Let $M(f)=\left[f\left(t_{1}\right), \ldots, f\left(t_{m}\right)\right]$, let $\mu_{r, 0}^{*}=\mu_{r, 0} M^{-1}$ be the induced probability on \mathbb{R}^{m}, and let $v=\mu_{r, 0}(\cdot \mid M(f)=0)$ be the conditional probability with $M(f)=0$. Letting $s_{y}(x)=\sum_{i=1}^{m} y_{i} s_{j}(x)$ be the mean element of $\mu_{r, 0}(\cdot \mid M(f)=y)$ $\left(y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}\right)$, we have that any f can be represented as $f=s_{y}+h$, where y is distributed according to $\mu_{r, 0}^{*}, h$ is distributed according to v, and y and h are independent. Since $s_{y}\left(t_{i}\right)=y_{i}$, we have that for an arbitrary $T \in \mathscr{L}_{n}$

$$
\begin{aligned}
& \mu_{r, 0}\left(f \in C^{r}: \max _{1 \leqslant i \leqslant m}\left|f\left(t_{i}\right)-T(f)\left(t_{i}\right)\right| \geqslant \varepsilon\right) \\
& \quad=\left(\mu_{r, 0}^{*} \times v\right)\left((y, h) \in \mathbb{R}^{m} \times C^{r}: \max _{1 \leqslant i \leqslant m}\left|y_{i}-T\left(s_{y}\right)\left(t_{i}\right)+h\left(t_{i}\right)-T(h)\left(t_{i}\right)\right| \geqslant \varepsilon\right) \\
& \quad \geqslant \mu_{r, 0}^{*}\left(y \in \mathbb{R}^{m}: \max _{1 \leqslant i \leqslant m}\left|y_{i}-A(y)\right| \geqslant \varepsilon\right)
\end{aligned}
$$

with the matrix $A=\left(a_{i, j}\right)$ given by $a_{i, j}=T\left(s_{j}\right)\left(t_{i}\right)$. (The inequality above follows from the fact that v is zero mean Gaussian.)

Since the rank of T does not exceed n, so does the rank of A. This implies that $e_{n}\left(\varepsilon ; C^{r}, L_{\infty}, \omega_{r}\right) \geqslant e_{n}\left(\varepsilon ; \mathbb{R}^{m}, l_{\infty}^{m}, \mu_{r, 0}^{*}\right)$, or equivalently, that

$$
\begin{equation*}
\lambda_{n, \delta}^{(p)}\left(C^{r}, L_{\infty}, \omega_{r}\right) \geqslant \lambda_{n, \delta}^{(p)}\left(\mathbb{R}^{m}, l_{\infty}^{m}, \mu_{r, 0}^{*}\right) . \tag{15}
\end{equation*}
$$

Finally, since

$$
\mu_{r, 0}^{*}=\mathscr{N}(0, \sigma I) \quad \text { with } \quad \sigma \geqslant c_{1} m^{-(r+1 / 2)}
$$

for some constant c_{1} (see [14]), this and (15) imply that

$$
\lambda_{n, \delta}^{(p)}\left(C^{r}, L_{\infty}, \omega_{r}\right) \geqslant \lambda_{n, \delta}^{(p)}\left(\mathbb{R}^{m}, l_{\infty}^{m}, \mu_{r, 0}^{*}\right) \geqslant c_{1} m^{-(r+1 / 2)} \lambda_{n, \delta}^{(p)}\left(\mathbb{R}^{m}, l_{\infty}^{m}, \gamma\right) .
$$

Hence, Lemma 1 with $m=2 n$ completes the proof of the lower bound (14).
We now prove the upper bound,

$$
\begin{equation*}
\lambda_{n, \delta}^{(p)}\left(C^{r}, L_{\infty}, \omega_{r}\right) \leqslant c n^{-(r+1 / 2)} \sqrt{\ln (n / \delta)} \tag{16}
\end{equation*}
$$

for a positive constant c. For this end, we use the following general result; see [5]. Let $\left\{n_{k}\right\}_{k}$ be a sequence of nonnegative integers and $\left\{\delta_{k}\right\}_{k}$ be a sequence of reals from $[0,1]$. If

$$
\begin{equation*}
n_{k} \leqslant 2^{k}, \quad \sum_{k=0}^{\infty} n_{k} \leqslant n, \quad \sum_{k=0}^{\infty} \delta_{k} \leqslant \delta, \quad \forall k \geqslant 0, \tag{17}
\end{equation*}
$$

then

$$
\begin{equation*}
\lambda_{n, \delta}^{(p)}\left(C^{r}, L_{\infty}, \omega_{r}\right) \leqslant \sum_{k=0}^{\infty} 2^{-(r+1 / 2) k} \lambda_{n_{k}, \delta_{k}}^{(p)}\left(\mathbb{R}^{2^{k}}, l_{\infty}^{2^{k}}, \gamma\right) . \tag{18}
\end{equation*}
$$

Without loss of generality, we can assume that $n=2^{k^{\prime}}$. Consider

$$
n_{k}=\left\{\begin{array}{ll}
2^{k}, & k<k^{\prime}-1, \\
\left\lfloor n 2^{k^{\prime}-k}\right\rfloor, & k \geqslant k^{\prime}-1,
\end{array} \quad \delta_{k}= \begin{cases}0, & k<k^{\prime}-1, \\
\delta 2^{k^{\prime}-k}, & k \geqslant k^{\prime}-1 .\end{cases}\right.
$$

Obviously, $\left\{n_{k}\right\}_{k}$ and $\left\{\delta_{k}\right\}_{k}$ satisfy (17), and

$$
\begin{aligned}
& \sum_{k=0}^{\infty} 2^{-(r+1 / 2) k} \lambda_{n_{k}, \delta_{k}}^{(p)}\left(\mathbb{R}^{2^{k}}, l_{\infty}^{2^{k}}, \gamma\right) \\
& \quad \leqslant c_{1} \sum_{k=k^{\prime}-1}^{\infty} 2^{-(r+1 / 2) k} \sqrt{\ln \left(\left(2^{k}-n_{k}\right) /\left(\delta 2^{k^{\prime}-k}\right)\right)} \\
& \leqslant c_{2} 2^{-(r+1 / 2) k^{\prime}} \sqrt{\ln \left(2 k^{\prime} / \delta\right)}
\end{aligned}
$$

for some positive constants c_{1} and c_{2}. This proves (16) and, hence, completes the proof of Theorem 1.

Acknowledgments

We thank Klaus Ritter and Henryk Woźniakowski for their valuable comments.

References

1. A. P. Buslaev, On best approximation of the random functions and functionals, Third Saratov Winter School 2 (1988), 14-17.
2. S. Heinrich, Lower bounds for the complexity of Monte-Carlo approximation, J. Complexity 8 (1992), 277-300.
3. H. H. Kuo, "Gaussian Measures in Banach Spaces," Lecture Notes in Math., Vol. 463, Springer-Verlag, Berlin, 1975.
4. V. E. Maiorov, Average n-widths of the Wiener space in L_{∞}-norm, J. Complexity 9 (1993), 222-230.
5. V. E. Maiorov, Kolmogorov (n, δ)-widths of the spaces of the smooth functions, Math. Sb. 184 (1993), 49-70.
6. V. E. Maiorov, About n-widths of Wiener space in L_{q}-norm, J. Complexity, to appear.
7. P. Mathe, Random approximation of Sobolev embeddings, J. Complexity 7 (1991), 261-281.
8. C. A. Micchelli, Orthogonal projections are optimal algorithms, J. Approx. Theory 40 (1984), 101-110.
9. A. Pinkus, " n-Widths in Approximation Theory," Springer-Verlag, New York, 1985.
10. K. Ritter, Approximation and optimization on the Wiener space, J. Complexity 6 (1990), 337-364.
11. P. Speckman, " L_{p} Approximation of Autoregressive Gaussian Processes," Technical Report, Department of Statistics, University of Oregon, Eugene, OR, 1979.
12. J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, "Information-Based Complexity," Academic Press, New York, 1988.
13. S. M. Voronin and N. Temirgaliey, On some applications of Banach measure, Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat. 5 (1984), 8-11.
14. G. W. Wasilkowski, On average complexity of global optimization problems, Math. Programming 57 (1992), 313-324.

[^0]: * Partially supported by the National Science Foundation under Grant CCR-91-14042.

