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We show that for r-fold Wiener measure, the probabilistic and average linear
widths in the L_-norm are proportional to n="*Y» _/Inn/é and n="*12 _/Inn,
respectively.  © 1996 Academic Press, Inc.

1. INTRODUCTION

We study probabilistic linear (n, 6)-widths and average linear n-widths
for L. -approximation of functions that are distributed according to the
r-fold Wiener measure. As the clasical n-widths (see, e.g., [9]); probabilistic
and average widths quantify the error of best approximating operators.
However, in the classical approach, the errors are defined by their worst
case with respect to a given class (typically a unit ball of the underlying
space). In the probabilistic approach, the errors are defined by the worst
case performance on a subset of measure at least 1 —J, and in the average
case approach, they are defined by their expectations, both with respect to
a given probability measure.

The study of probabilistic and average widths has been suggested only
recently (see, e.g., [ 8, 13]) and relatively few results have been obtained so
far (see, e.g., [ 1, 2, 4-7, 10, 12, 13]). These include results on probabilistic
and average Kolmogorov widths in L -norm for any g<oo and on
probabilistic and average linear widths in L norm for finite ¢. In both
cases, the underlying space of function is the C'[0, 1] space equipped with
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the r-fold Wiener measure. More specifically, the upper bounds on the
average widths follow from [11] for g< oo and [10] for ¢=oco0. The
asymptotic lower bounds on average Kolmogorov widths with arbitrary ¢
and on average linear widths with finite ¢ are mainly due to [4-6]. The
results concerning probabilistic Kolmogorov and linear widths are also due
to [4-6]. Our result concerning the probabilistic and average linear widths
for ¢g=o0 provides the last missing piece as far as the probabilistic
nd average linear widths with r-fold Wiener measures are concerned.
Thus, denoting probabilistic Kolmogorov and linear (7, d)-widths by
drs(C’, L,, ,) and 2%(C", L,, w,), and average Kolmogorov and linear
n-widths by d{“(C", L,, w,) and 2{"(C", L,, w,), respectively, we conclude
that

AN C L) =n" "2 /T4 n~  In(1/9), 1<g< o,

—+12) /] —min{1.2/q} 1) (1 /5 1<g<
Ly = /L n(1/o) g< o,
) q n—12 /n(n/d), q= oo,

d\(C",L,w,)=n"""172), I1<g< o,
—(r+1/2)
. n , I<g<w
ACT Ly, =4 SE=9
n JInn, q = 0.

It is interesting to note that for finite ¢, the average Kolmogorov and
average linear n-widths are equal modulo multiplicative constants. We have
also equality between probabilistic Kolmogorov and linear (n, J)-widths
for ¢ <2. For such values of ¢, linear approximation opertors are (modulo
a constant) as good as nonlinear operators. The difference is only for
g = oo (for average widths) and for ¢ >2 (for probabilistic widths); how-
ever, then linear operators lose to optimal nonlinear operators only by a
factor of \/Inn and n'"2~ "9+ respectively.

The paper is organized as follows. Basic definitions and the main result
are provided in Section 2. The proof of the result is in Section 3.

2. MAIN RESULT

For a nonnegative integer r, let C" be the space of r times continuously
differentiable functions defined on [0, 1]. Recall that the corresponding
Kolmogorov and linear n-widths are defined respectively by

d,(C",L,)= inf sup | f=T(/)l,, (1)
Ted, feB(C

4n(C', L) = inf  sup | f=T(f)ll, (2)

TeZ, feB(C)
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where B(C”) is the unit ball in C", 4, is the class of all (not necessarily
linear) operators 7T:B(C")— L, whose range is contained in an
n-dimensional subspace of L,, and %, is the class of all linear operators
from 4,,.

Let u be a probability measure defined on the Borel o-field of C". Given
0€e[0,1], the corresponding probabilistic Kolmogorov and probabilistic
linear (n, 0)-widths are defined by

d\’5(C", Ly, w)=inf inf sup |/ —T(f)l,, (3)
’ G Ted, feG
MS(CT, Ly, ) =inf inf sup | f—T(f)l,. (4)

G Te¥, feG

The first infima are taken with respect to all measurable sets G < C" with
wWG)=1-o.
The average Kolmogorov and average linear n-widths are defined by

d,"(C", Ly, )= inf E,(1f=T(ll,). (5)
A, Ly, p)= inf E,(1f =T(f)l,)- (6)

Here E, denotes the expectation with respect to x, ie.,

B, (1f =T, =] I =T, wdp).
Obviously,

di(C" Ly, ) jd“”  Lys 1) o,
1

HOC L) = [ HICT Ly ) 6

In what follows we assume that u equals the r-fold Wiener measure o, .
For basic properties of w,, see, e.g., [3]. Here we only mention that w, is
a zero mean Gaussian measure with the covariance function

x—0) (y=1"
(1) dt

and that w,(4)=wy(D"A4), where w, is the classical Wiener measure on
the space C° and D" is the differential operator, D"f = f".

As mentioned in Introduction, the probabilistic and average
Kolmogorov widths have been found for any ¢, and the probabilistic and

B, 00 fon =] ¢
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average linecar widths have been found only for finite ¢g. The following
theorem deals with probabilistic and average linear widths for ¢ = co.

THEOREM 1. For every r and 6 € (0, 1),

lgfg(cr,Loc,a)r)x;q*(’Jrl/z) 111(?1/5),

MNC, Ly, w,)=n"""V2 /lnn.

(8)

Actually, the proof of Theorem 1 provides another result concerning
linear widths for finite dimensional spaces. Let /” denote the space R”™
equipped with the maximum norm, and let y denote zero mean normal
distribution with the identity covariance matrix, y=.4"(0, I).

THEOREM 2. Let m>2n and 5€ (0, 3). Then

AR 17 y) =< /In((m —n)/9), AR ™ )= /In(m—n). (9)

3. PROOF

Due to (7), we only need to show the equality concerning the
probabilistic widths. We begin with few auxiliary lemmas.

LemMmA 1. Let m>2n. Let T be any operator in R whose range is
contained in an n-dimensional subspace. For i=1, ..,m, let g,=e,— T*(e;),
where e, is the ith unit vector. Then there are distinct indices i, ..., i,,_», such
that

dist{g; . lin{g,, .. g} } =1//2
for all s=0,..,m—2n—1.

Proof. Tt is known (see, e.g., [9]) that the following Kolmogorov
n-widths equal

d,(conv(e,, .., e,), [5)=/(m—n)/m. (10)
Therefore, there is i, such that
dist{g,, {0} } = lle;, — T*(e;)ll»=/(m—n)/m.
Assume by induction that iy, ..., i, (s<m—2n—1) exist. Consider the

index sets /= {ij, ..., i;} and I'={1,..,m}\I, and the following operator
P17 =177 Px=(x;),.p. From (10) it follows that

d,(conv{Pe,:iel'}, 15" 2\/(m—s—n)/(m—s).
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Therefore, there is i;, , €I’ for which

dist{ Pe; , PL} >\/(m—s—n)/(m —5),
where L =Im T*. Since Pg,= —PT*e,e PL for any i, we have

dist{g, . lin{g,, .., g} } >dist{Pg, , lin{Pg,, .., Pg,}}
>dist{Pe, ,, PL} =./(m—s—n)/(m—s).

Since s<m—2n, we have (m—s—n)/(m—n)>3%. This completes the
proof. |

Let k=m—2n, and let r,..,r, e R". By G,(ry, .., ;) we denote the
following polytop in R™:

G (ryy ) ={xeR”: max |{r,x)|<aj}.

1<i<k

LEMMA 2. Let hy=g; for s=1, .. k. Then

Pxx=Tx[ o, Za) 21 = (G (hy, ... hy)).
Proof. Since

|l — T, = max [<e;, x—Tx)|

1<i<m

= max [{e;—T%e,;, x)]

I<is<m

\Y

max |<hi9x>|9

I<i<k

we have p(x:|x—Tx|,=a)=yp(x:max,_,,|[<h,x)|=a)=1-—
WG, (hy, ..., b)), which completes the proof. ||

LEMmA 3. For

we have

m—zn

20
WGl < (1= 2} Gl )

Proof. Due to rotational invariance of y we can assume without loss of
generality that

hyyewhe_€linfey, ., e,_\}, heelin{e,, .., e;}.
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For xe R", let x' =(x,, ..., X,_). Then

WGy (hy, s i) = (2m) 752 f exp(—|x'[13/2)

Ga(h1, ..., hie—1)

exp( —x7/2) dx, dx'

X\[
[Kx', > + xphig| <a

<(@n) * 02 exp( — [x'|3/2) dv'(2m) 1”2
Gu(hyy ey hic—1)
X j exp(—12/2) dt
[thik| <a
= /Gy )27 2 [ exp(—P2) d.
|thik| < a

From Lemma 1 it follows that |h|=dist{h,, lin{h,, .., h,_}} > l/ﬁ.
Therefore,

WG (M oy 1)) SPG (s kg 1)) (27) 2 fl us exp(—1*/2) dt.
a2 (11)

To complete the proof we need only to show that

(27)~ 12 j exp(—22) dr <1 ——2

12
ltl<a /2 m—12n ( )

for sufficiently large (m — 2n)/(20).
For this end, we use the fact that

N c _ / ¢
— > x7/2 > -
7ZL e dt/xe Vee (0, /2/n), Vx> \/2% " (13)

which follows from the fact that f(x)=./2/ [ ¢ " dt —ce *"?/x has a
negative derivative for such values of ¢ and x and the fact that f(c0)=0.
Using c¢= l/ﬁ and x=a./2, we have x>+/c¢/(\/2/m —c¢) whenever

(m—2n)/(25)Zexp(l/(ﬂ—l)). Moreover, ¢/x > ./2d/(m —2n) whenever
(m—2n)/(20) = In((m —n)/(20)). Thus (13) holds when

—2 -2
ng n>max {nlnmzé n’ el/(\/i”}.

This completes the proof of Lemma 3. |
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We are ready to prove Theorem 2.
Proof of Theorem 2. Applying Lemma 3 k =m — 2n times, we get

k
WGolhy, o hk»s(l—f) |

Hence, Lemma 2 yields

2 k
o |x—Tx|m>a)>1—<1—,f> 56

Since T is arbitrary, this proves that

AB(R™ 17, )= a= /In((m—n)/d).

To prove equality observe that y(Q)>1—0 for
O={xeR”: max |x,]<./In((m—n)/d)}.

I<i<m—n

This means that for the orthogonal projection operator 7 on
lin{e,, .41l

sup ||x — Tx||, < /In((m—n)/d).
xeQ

This proves that A7) =./In((m—n)/d), as claimed, and completes the
proof of Theorem 2.

We are ready to prove Theorem 1.

Proof of Theorem 1. We begin with the lower bound:
ANC Loy )2 eon " /in(nfo) (14)

for a positive constant c¢,. For this end, we consider the inverse function of
probabilistic widths. That is, given n, let

€, (& " Lo, )= il o,(feC: [ f=T(f)l.>e)

for ¢>0. Obviously, e,(&; C", L., w,)=0 for e=15(C", L., , ®,).

Take now m=2n and a;=i/mfori=1,..,m. Let u, y=c,(- | N(f)=0)
be the conditional measure with N(f)=[f"(a;)=0:0<<r, 1 <i<m].
Since w, is Gaussian,

en(g; Cra Loos (/J,,) > en(g; Cra Loo? )ur,O)
> inf g, o(feC: max |f(1)—T(f)z)| =),

I<i<m
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where t,=(a,_,+a;)/2=2i—1)/2m). Let M(f)=[f(ty), .., f(t,,)], let
u¥o=u, oM~" be the induced probability on R”, and let
v=u, o - | M(f)=0) be the conditional probability with M(f)=0.
Letting s,(x) =237, y,5,(x) be the mean element of u, (- | M(f)=y)
(y=(»15 - Ym) €R™), we have that any f can be represented as f=s,+ A,
where y is distributed according to ¢, / is distributed according to v, and
y and h are independent. Since s,(¢;) = y;, we have that for an arbitrary
Te Y,

tro(f€CT: max | f(z)—T(f)(1,)] =)

1<i<m

=(ufoxv)(y, h) eR™x C": max |y, —T(s,)(1;) + h(z,) = T(h)(1;)| =€)

I<i<m

Zpfo(yeR™: max |y,—A(y)|=e)

1<i<m

with the matrix 4 =(a, ;) given by a, ;= T(s;)(¢,). (The inequality above
follows from the fact that v is zero mean Gaussian.)

Since the rank of T does not exceed n, so does the rank of A. This
implies that ¢, (e; C", L, w,)=e,(e R™, [, uk,), or equivalently, that

o0

i(]l) (Ci) ch;’wr)>}"£’t],]35(Rm’ lrf:u’//l:‘jO) (15)

n,o

Finally, since
wko=N(0,al with o=c¢,m +12

for some constant ¢, (see [ 14]), this and (15) imply that
MIHCT Loy ,)Z A5 (R™ 17, k) = cqm ™" H VD AH(R, 17, ).

Hence, Lemma 1 with m =2n completes the proof of the lower bound (14).
We now prove the upper bound,

APNC, L, w,)<cen™ "2 /In(n/o) (16)

for a positive constant ¢. For this end, we use the following general result;
see [5]. Let {n;}, be a sequence of nonnegative integers and {J,}, be a
sequence of reals from [0, 1]. If

n, <2,

I M8

n, <n, Y 0,<9, Vk =0, (17)
k=0 k=0
then

n,o ny, Ok

JOC L, )< Y 27Uk (R 2 ) (18)
k=0
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Without loss of generality, we can assume that n = 2. Consider

(2%, k<k —1, 5 - 0, k<k —1,
E7mek =%, k=k —1, K762k % k=k —1.

Obviously, {n.}, and {d.} satisfy (17), and

2R (R )

nj, Ok

I8

[s’e]

e X 27UTR /n((2F = m)/(628 )

k=k'—1

< 622,(r+ 1/2)k’ In(2k'/9)

for some positive constants ¢, and ¢,. This proves (16) and, hence, com-
pletes the proof of Theorem 1. ||

11.
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