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We show that for r-fold Wiener measure, the probabilistic and average linear
widths in the L�-norm are proportional to n&(r+1�2)

- ln n�$ and n&(r+1�2)
- ln n,

respectively. � 1996 Academic Press, Inc.

1. Introduction

We study probabilistic linear (n, $)-widths and average linear n-widths
for L�-approximation of functions that are distributed according to the
r-fold Wiener measure. As the clasical n-widths (see, e.g., [9]); probabilistic
and average widths quantify the error of best approximating operators.
However, in the classical approach, the errors are defined by their worst
case with respect to a given class (typically a unit ball of the underlying
space). In the probabilistic approach, the errors are defined by the worst
case performance on a subset of measure at least 1&$, and in the average
case approach, they are defined by their expectations, both with respect to
a given probability measure.

The study of probabilistic and average widths has been suggested only
recently (see, e.g., [8, 13]) and relatively few results have been obtained so
far (see, e.g., [1, 2, 4�7, 10, 12, 13]). These include results on probabilistic
and average Kolmogorov widths in Lq-norm for any q�� and on
probabilistic and average linear widths in Lq-norm for finite q. In both
cases, the underlying space of function is the C r[0, 1] space equipped with
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the r-fold Wiener measure. More specifically, the upper bounds on the
average widths follow from [11] for q<� and [10] for q=�. The
asymptotic lower bounds on average Kolmogorov widths with arbitrary q
and on average linear widths with finite q are mainly due to [4�6]. The
results concerning probabilistic Kolmogorov and linear widths are also due
to [4�6]. Our result concerning the probabilistic and average linear widths
for q=� provides the last missing piece as far as the probabilistic
nd average linear widths with r-fold Wiener measures are concerned.
Thus, denoting probabilistic Kolmogorov and linear (n, $)-widths by
d (p)

n, $ (Cr, Lq , |r) and * (p)
n, $ (Cr, Lq , |r), and average Kolmogorov and linear

n-widths by d (a)
n (Cr, Lq , |r) and * (a)

n (Cr, Lq , |r), respectively, we conclude
that

d (p)
n, $(C r, Lq, |r) �� n&(r+1�2)

- 1+n&1 ln(1�$), 1�q��,

* (p)
n, $(C r, Lq, |r) �� {n&(r+1�2)

- 1+n&min[1, 2�q] ln(1�$),
n&(r+1�2)

- ln(n�$),
1�q<�,
q=�,

d (a)
n (C r, Lq, |r) �� n&(r+1�2), 1�q��,

* (a)
n (C r, Lq, |r) �� {n&(r+1�2),

n&(r+1�2)
- ln n,

1�q<�,
q=�.

It is interesting to note that for finite q, the average Kolmogorov and
average linear n-widths are equal modulo multiplicative constants. We have
also equality between probabilistic Kolmogorov and linear (n, $)-widths
for q�2. For such values of q, linear approximation opertors are (modulo
a constant) as good as nonlinear operators. The difference is only for
q=� (for average widths) and for q>2 (for probabilistic widths); how-
ever, then linear operators lose to optimal nonlinear operators only by a
factor of - ln n and n(1�2&1�q)+, respectively.

The paper is organized as follows. Basic definitions and the main result
are provided in Section 2. The proof of the result is in Section 3.

2. Main Result

For a nonnegative integer r, let Cr be the space of r times continuously
differentiable functions defined on [0, 1]. Recall that the corresponding
Kolmogorov and linear n-widths are defined respectively by

dn (Cr, Lq)= inf
T # 4n

sup
f # B(Cr)

& f &T( f )&q , (1)

*n(Cr, Lq)= inf
T # Ln

sup
f # B(Cr)

& f &T( f )&q , (2)

32 maiorov and wasilkowski



F
ile

:6
40

J
29

02
03

.B
y:

B
V

.D
at

e:
20

:0
1:

96
.T

im
e:

17
:1

6
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

27
59

Si
gn

s:
14

18
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

where B(Cr) is the unit ball in Cr, 4n is the class of all (not necessarily
linear) operators T : B(C r) � Lq whose range is contained in an
n-dimensional subspace of Lq , and Ln is the class of all linear operators
from 4n .

Let + be a probability measure defined on the Borel _-field of Cr. Given
$ # [0, 1], the corresponding probabilistic Kolmogorov and probabilistic
linear (n, $)-widths are defined by

d (p)
n, $ (Cr, Lq , +)=inf

G
inf

T # 4n

sup
f # G

& f &T( f )&q , (3)

* (p)
n, $ (Cr, Lq , +)=inf

G
inf

T # Ln

sup
f # G

& f &T( f )&q . (4)

The first infima are taken with respect to all measurable sets G/Cr with
+(G)�1&$.

The average Kolmogorov and average linear n-widths are defined by

d (a)
n (Cr, Lq , +)= inf

T # 4n

E+ (& f &T( f )&q), (5)

* (a)
n (Cr, Lq , +)= inf

T # Ln

E+ (& f &T( f )&q). (6)

Here E+ denotes the expectation with respect to +, i.e.,

E+ (& f &T( f )&q)=|
Cr

& f &T( f )&q +(df ).

Obviously,

d (a)
n (Cr, Lq , +)=|

1

0
d (p)

n, $ (Cr, Lq , +) d$,

(7)

* (a)
n (Cr, Lq , +)=|

1

0
* (p)

n, $ (Cr, Lq , +) d$.

In what follows we assume that + equals the r-fold Wiener measure |r .
For basic properties of |r , see, e.g., [3]. Here we only mention that |r is
a zero mean Gaussian measure with the covariance function

E|r ( f (x) f ( y))=|
1

0

(x&t) r
+ (y&t) r

+

(r!)2 dt

and that |r (A)=|0(DrA), where |0 is the classical Wiener measure on
the space C 0 and Dr is the differential operator, Drf = f (r).

As mentioned in Introduction, the probabilistic and average
Kolmogorov widths have been found for any q, and the probabilistic and

33linear-widths in L�-norm
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average linear widths have been found only for finite q. The following
theorem deals with probabilistic and average linear widths for q=�.

Theorem 1. For every r and $ # (0, 1
2),

* (p)
n, $ (Cr, L� , |r) �� n&(r+1�2)

- ln(n�$),
(8)

* (a)
n (Cr, L� , |r) �� n&(r+1�2)

- ln n.

Actually, the proof of Theorem 1 provides another result concerning
linear widths for finite dimensional spaces. Let l m

� denote the space Rm

equipped with the maximum norm, and let # denote zero mean normal
distribution with the identity covariance matrix, #=N(0, I).

Theorem 2. Let m>2n and $ # (0, 1
2). Then

* (p)
n, $ (Rm, l m

� , #) �� - ln((m&n)�$), * (a)
n (Rm, l m

� , #) �� - ln(m&n). (9)

3. Proof

Due to (7), we only need to show the equality concerning the
probabilistic widths. We begin with few auxiliary lemmas.

Lemma 1. Let m>2n. Let T be any operator in Rm whose range is
contained in an n-dimensional subspace. For i=1, ..., m, let gi=ei&T*(ei),
where ei is the i th unit vector. Then there are distinct indices i1 , ..., im&2n such
that

dist[gis+1
, lin[gi1 , ..., gis]]�1�- 2

for all s=0, ..., m&2n&1.

Proof. It is known (see, e.g., [9]) that the following Kolmogorov
n-widths equal

dn (conv(e1 , ..., em), l m
2 )=- (m&n)�m. (10)

Therefore, there is i1 such that

dist[gi1 , [0]]=&ei1&T*(ei1)&2�- (m&n)�m.

Assume by induction that i1 , ..., is (s�m&2n&1) exist. Consider the
index sets I=[i1 , ..., is] and I$=[1, ..., m]"I, and the following operator
P: l m

2 � l m&s
2 , Px=(xi) i # I$ . From (10) it follows that

dn (conv[Pei : i # I$], l m&n
2 )�- (m&s&n)�(m&s).

34 maiorov and wasilkowski
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Therefore, there is is+1 # I$ for which

dist[Peis+1
, PL]�- (m&s&n)�(m&s),

where L=Im T*. Since Pgi=&PT*ei # PL for any i, we have

dist[gis+1
, lin[gi1 , ..., gis]]�dist[Pgis+1

, lin[Pgi1
, ..., Pgis]]

�dist[Peis+1
, PL]�- (m&s&n)�(m&s).

Since s�m&2n, we have (m&s&n)�(m&n)� 1
2. This completes the

proof. K

Let k=m&2n, and let r1 , ..., rk # Rm. By Ga (r1 , ..., rk) we denote the
following polytop in Rm:

Ga (r1 , ..., rk)=[x # Rm : max
1�i�k

|(ri , x) |�a].

Lemma 2. Let hs=gis for s=1, ..., k. Then

#(x : &x&Tx&��a)�1&#(Ga (h1 , ..., hk)).

Proof. Since

&x&Tx&�= max
1�i�m

|(ei , x&Tx) |

= max
1�i�m

|(ei&T*ei , x) |

� max
1�i�k

|(hi , x) | ,

we have #(x : &x & Tx&� � a) � #(x : max1�i�k |(hi , x) | � a) = 1 &
#(Ga (h1 , ..., hk)), which completes the proof. K

Lemma 3. For

a=�1
2

ln
m&2n

2$
we have

#(Ga (h1 , ..., hk))�\1&
2$

m&2n+ #(Ga (h1 , ..., hk&1)).

Proof. Due to rotational invariance of # we can assume without loss of
generality that

h1 , ..., hk&1 # lin[e1 , ..., ek&1], hk # lin[e1 , ..., ek].

35linear-widths in L�-norm
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For x # Rm, let x$=(x1 , ..., xk&1). Then

#(Ga (h1 , ..., hk))=(2?)&k�2 |
Ga(h1 , ..., hk&1)

exp(&&x$&2
2 �2)

_|
|(x$, h$k)+xkhkk|�a

exp(&x2
k�2) dxk dx$

�(2?)&(k&1)�2 |
Ga(h1 , ..., hk&1)

exp(&&x$&2
2�2) dx$(2?)&1�2

_|
|thkk|�a

exp(&t2�2) dt

=#(Ga (h1 , ..., kk&1))(2?)&1�2 |
|thkk|�a

exp(&t2�2) dt.

From Lemma 1 it follows that |hkk|=dist[hk , lin[h1 , ..., hk&1]]�1�- 2.
Therefore,

#(Ga (h1 , ..., hk))�#(Ga (h1 , ..., kk&1))(2?)&1�2 |
|t|�a - 2

exp(&t2�2) dt.
(11)

To complete the proof we need only to show that

(2?)&1�2 |
|t|�a - 2

exp(&t2�2) dt�1&
2$

m&2n
(12)

for sufficiently large (m&2n)�(2$).
For this end, we use the fact that

�2
? |

�

x
e&t2�2 dt�

c
x

e&x2�2 \c # (0, - 2�?), \x�� c

- 2�?&c
, (13)

which follows from the fact that f (x)=- 2�? ��
x e&t2�2 dt&ce&x2�2�x has a

negative derivative for such values of c and x and the fact that f (�)=0.
Using c=1�- ? and x=a - 2, we have x�- c�(- 2�?&c) whenever

(m&2n)�(2$)�exp(1�(- 2&1)). Moreover, c�x�- 2$�(m&2n) whenever
(m&2n)�(2$)�? ln((m&n)�(2$)). Thus (13) holds when

m&2n
2$

�max {? ln
m&2n

2$
, e1�(- 2&1)= .

This completes the proof of Lemma 3. K

36 maiorov and wasilkowski
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We are ready to prove Theorem 2.

Proof of Theorem 2. Applying Lemma 3 k=m&2n times, we get

#(Ga (h1 , ..., hk))�\1&
2$
k +

k

.

Hence, Lemma 2 yields

#(x : &x&Tx&��a)�1&\1&
2$
k +

k

�$.

Since T is arbitrary, this proves that

* (p)
n$ (Rm, l m

� , #)�a �� - ln((m&n)�$).

To prove equality observe that #(Q)�1&$ for

Q=[x # Rm : max
1�i�m&n

|xi |�- ln((m&n)�$)].

This means that for the orthogonal projection operator T on
lin[em&n+1 , ..., em],

sup
x # Q

&x&Tx&��- ln((m&n)�$).

This proves that * (p)
n, $

�� - ln((m&n)�$), as claimed, and completes the
proof of Theorem 2.

We are ready to prove Theorem 1.

Proof of Theorem 1. We begin with the lower bound:

* (p)
n, $ (Cr, L� , |r)�cr n&(r+1�2)

- ln(n�$) (14)

for a positive constant cr . For this end, we consider the inverse function of
probabilistic widths. That is, given n, let

en (=; Cr, L� , |r) := inf
T # Ln

|r ( f # Cr : & f &T( f )&��=)

for =�0. Obviously, en (=; C r, L� , |r)=$ for ==* (p)
n, $ (Cr, L� , |r).

Take now m=2n and ai=i�m for i=1, ..., m. Let +r, 0=|r ( } | N( f )=0)
be the conditional measure with N( f )=[ f ( j )(ai)=0 : 0� j�r, 1�i�m].
Since |r is Gaussian,

en (=; C r, L� , |r)�en (=; Cr, L� , +r, 0)

� inf
T # Ln

+r, 0( f # Cr : max
1�i�m

| f (ti)&T( f )(ti)|�=),

37linear-widths in L�-norm
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where ti=(ai&1+ai)�2=(2i&1)�(2m). Let M( f )=[ f (t1), ..., f (tm)], let
+*r, 0=+r, 0 M&1 be the induced probability on Rm, and let
&=+r, 0( } | M( f )=0) be the conditional probability with M( f )=0.
Letting sy(x)=�m

i=1 yi sj (x) be the mean element of +r, 0( } | M( f )=y)
(y=(y1 , ..., ym) # Rm), we have that any f can be represented as f =sy+h,
where y is distributed according to +*r, 0 , h is distributed according to &, and
y and h are independent. Since sy(ti)=yi , we have that for an arbitrary
T # Ln

+r, 0( f # C r : max
1�i�m

| f (ti)&T( f )(ti)|�=)

=(+*r, 0_&)((y, h) # Rm_Cr : max
1�i�m

|yi&T(sy)(ti)+h(ti)&T(h)(ti)|�=)

�+*r, 0(y # Rm : max
1�i�m

|yi&A(y)|�=)

with the matrix A=(ai, j ) given by ai, j=T(sj )(ti). (The inequality above
follows from the fact that & is zero mean Gaussian.)

Since the rank of T does not exceed n, so does the rank of A. This
implies that en (=; Cr, L� , |r)�en (=; Rm, l m

� , +*r, 0), or equivalently, that

* (p)
n, $ (Cr, L� , |r)�* (p)

n, $ (Rm, l m
� , +*r, 0). (15)

Finally, since

+*r, 0=N(0, _I) with _�c1 m&(r+1�2)

for some constant c1 (see [14]), this and (15) imply that

* (p)
n, $(Cr, L� , |r)�* (p)

n, $(Rm, l m
� , +*r, 0)�c1 m&(r+1�2)* (p)

n, $ (Rm, l m
� , #).

Hence, Lemma 1 with m=2n completes the proof of the lower bound (14).
We now prove the upper bound,

* (p)
n, $ (Cr, L� , |r)�cn&(r+1�2)

- ln(n�$) (16)

for a positive constant c. For this end, we use the following general result;
see [5]. Let [nk]k be a sequence of nonnegative integers and [$k]k be a
sequence of reals from [0, 1]. If

nk�2k, :
�

k=0

nk�n, :
�

k=0

$k�$, \k�0, (17)

then

* (p)
n, $ (Cr, L� , |r)� :

�

k=0

2&(r+1�2)k* (p)
nk , $k

(R2k
, l 2k

� , #). (18)

38 maiorov and wasilkowski
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Without loss of generality, we can assume that n=2k$. Consider

nk={2k,
wn2k$&kx,

k<k$&1,
k�k$&1,

$k={0,
$2k$&k,

k<k$&1,
k�k$&1.

Obviously, [nk]k and [$k]k satisfy (17), and

:
�

k=0

2&(r+1�2)k* (p)
nk , $k

(R2k
, l 2k

� , #)

�c1 :
�

k=k$&1

2&(r+1�2)k
- ln((2k&nk)�($2k$&k))

�c2 2&(r+1�2)k$
- ln(2k$�$)

for some positive constants c1 and c2 . This proves (16) and, hence, com-
pletes the proof of Theorem 1. K
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